If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7.5t^2-10t-120=0
a = 7.5; b = -10; c = -120;
Δ = b2-4ac
Δ = -102-4·7.5·(-120)
Δ = 3700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3700}=\sqrt{100*37}=\sqrt{100}*\sqrt{37}=10\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{37}}{2*7.5}=\frac{10-10\sqrt{37}}{15} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{37}}{2*7.5}=\frac{10+10\sqrt{37}}{15} $
| -2n-8=-6n | | 7x+1-5=2x+1-5 | | (2+x)(3+2x)=9x+6 | | 7y=7+8y | | -8-4h=-6h | | 6x-35=3 | | -2x+5x+6=5x+6 | | -2x+5x+0=5x+6 | | -2x+5x+7=5x+6 | | -8p+6=-7p | | -2x+5x+7x=5x+6 | | 32x+1+4=25 | | x2=1600 | | -2x+5x+6x=5x+6 | | -2x+5x+4x=5x+6 | | -2x+8x+9=6x-7 | | 0.41x=24300 | | 6(y-3)+7=19 | | x+4x(1400-800)=0 | | 80/x-x/20=0 | | (6y-86)=180 | | 7.65=2.9+x | | 92/7x=92 | | x+800(4x-1400)=0 | | x^2-1+12=0 | | 13t^2-4t-284=0 | | s²-5s-6=0 | | M/3=2m-1 | | 60=12+(n-1)(6) | | 2g-4+2g+5=45 | | 2e×=21 | | 36=14+13+k |